Mineração de regras de associação sequenciais em séries temporais e visualização: aplicação em dados agrometeorológicos
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Technological development brought improvements in the technology of climate sensors and Earth's surface image acquisition, gathering increasing amounts of data. Generally, when these data are submitted to mining algorithms, the output is the production of hundreds or even thousands of textual patterns, making the task of data analysis by the domain expert even harder. Hence, it is crucial, to support experts, the development of a tool that helps to identify and display patterns of interest. In this context, this research project at Master Science level aims to develop a technique for mining association rules in time series allowing agrometeorological data analysis over time.
Descrição
Citação
CANO, Marcos Daniel. Mineração de regras de associação sequenciais em séries temporais e visualização: aplicação em dados agrometeorológicos. 2012. 94 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.