Simetria de Lie de uma equação KdV com dispersão não-linear

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

The Rosenau-Hyman, or K(m, n), equations are a generalized version of the Korteweg-de Vries (KdV) equation where the dipersive term is non-linear. Such partial differential equations not always have a specific method by which can be solved, besides the solutions are not always analytical. The Lie symmetry method was applied to look for solutions of these equations. This method consists in finding the most general symmetry group of the equation, wherewith the solution can be found. It was found an expression to the solution and to some particular cases. It was shown that in the case K(2, 2) a new kind of solution, called compacton, with peculiar properties is found.

Descrição

Citação

SOUSA, Poliane Lima de. Simetria de Lie de uma equação KdV com dispersão não-linear. 2015. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7461.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced