Invariantes de germes de aplicações
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem.
Descrição
Palavras-chave
Citação
AMENT, Daiane Alice Henrique. Invariantes de germes de aplicações. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8976.