Geração genética multiobjetivo de bases de conhecimento fuzzy com enfoque na distribuição das soluções não dominadas
Carregando...
Arquivos
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The process of building the knowledge base of fuzzy systems has benefited extensively
of methods to automatically extract the necessary knowledge from data sets that represent
examples of the problem. Among the topics investigated in the most recent research is the
matter of balance between accuracy and interpretability, which has been addressed by means
of multi-objective genetiv algorithms, NSGA-II being on of the most popular. In this scope,
we identified the need to control the diversity of solutions found by these algorithms, so that
each solution would balance the Pareto frontier with respect to the goals optimized by the
multi-objective genetic algorithm. In this PhD thesis a multi-objective genetic algorithm,
named NSGA-DO, is proposed. It is able to find non dominated solutions that balance
the Pareto frontier with respect optimization of the objectives. The main characteristicof
NSGA-DO is the distance oriented selection of solutions. Once the Pareto frontier is found,
the algorithm uses the locations of the solutions in the frontier to find the best distribution of
solutions. As for the validation of the proposal, NSGA-DO was applied to a methodology
for the generation of fuzzy knowledge bases. Experiments show the superiority of NSGADO
when compared to NSGA-II in all three issues analyzed: dispersion, accuracy and
interpretability.
Descrição
Citação
PIMENTA, Adinovam Henriques de Macedo. Geração genética multiobjetivo de bases de conhecimento fuzzy com enfoque na distribuição das soluções não dominadas. 2014. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2014. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8574.