GARMA models, a new perspective using Bayesian methods and transformations
Abstract
Generalized autoregressive moving average (GARMA) models are
a class of models that was developed for extending the univariate
Gaussian ARMA time series model to a flexible observation-driven
model for non-Gaussian time series data. This work presents
the GARMA model with discrete distributions and application of
resampling techniques to this class of models. We also proposed The
Bayesian approach on GARMA models. The TGARMA (Transformed
Generalized Autoregressive Moving Average) models was proposed,
using the Box-Cox power transformation. Last but not least we
proposed the Bayesian approach for the TGARMA (Transformed
Generalized Autoregressive Moving Average).