Aplicando XAI na comparação de redes neurais e árvores de decisão
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The new focus on artificial intelligence confronts us with a long-standing concern data on such algorithms, the distinction between white-box and black box. This study seeks to explore analysis techniques, known as Explainable AI (XAI) for such models, especially in so-called black-box algorithms, those in which
the details of his decision-making are not completely known. Is important the explainability of the AI model, as opaque models can covertly inflict ethical and trustworthiness issues, including the possibility of bias, discrimination, privacy and rights violations. The chosen approach aims to study and apply some
of these XAI techniques to unravel the logic of an algorithm considered black-box, using a progressive approach, which explores the fundamentals of a neural network through to application of explainable techniques, presenting a comparison of behavior between neural networks and decision tree. Finally, comparisons are made between metrics of the models and the results found are discussed.
Descrição
Palavras-chave
Citação
MARINHO, Eduardo Augusto. Aplicando XAI na comparação de redes neurais e árvores de decisão. 2024. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19262.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
