Segmentação de cristais de clínquer em imagens microscópicas via redes neurais convolucionais
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Portland cement is currently carried out by trained professionals who analyze the crystals present in the microstructure of the clinker (an input produced in the cement manufacturing process and which gives it its main characteristics). Among these crystals, the one that most affects the final product is Alita (C3S).
Because of this, building an automatic process for segmenting and classifying C3S in microscopic images of clinker can bring savings and efficiency in cement manufacturing. This work, therefore, seeks, through convolutional neural networks and image pre-processing filters, to carry out this segmentation so that the automation of the process is viable, increasing the quality of the product. A description of neural networks and their extensions is provided, as well as a brief review of the most common image preprocessing filters. Subsequently, several neural network models are fitted and compared in the analysis of clinker images.
Descrição
Citação
RODRIGUES, Renan Vinicius. Segmentação de cristais de clínquer em imagens microscópicas via redes neurais convolucionais. 2024. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21166.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NoDerivs 3.0 Brazil
