Plataforma de modelagem baseada em agentes (ABM) em R: simulação de abundância e revisão de métodos de controle de Sus scrofa
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The wild boar (Sus scrofa ) is considered one of the most impactful invasive species
in the world, causing both environmental and economic damage. Control strategies
for this animal have proven ineffective, often based on methods lacking adequate
population monitoring and scientific basis. This work aimed to present an agent-based
computational platform (ABM) developed in R, which performs fauna monitoring
simulations via camera traps. The species Sus scrofa was chosen as a case study in a
region of southwestern São Paulo state. 40,000 agent trails, representing herds of wild
boars, were simulated, and the performance of Random Encounter Models (REM) in
estimating population density was evaluated. The results revealed that the use of
exclusion windows, a common practice in camera trapping studies, tends to
overestimate population density and reduce agreement with real values, contradicting
bibliographic recommendations. Furthermore, landscape structure was a determining
factor in the accuracy of the estimates. In parallel, a review of control and monitoring
methods highlighted the difficulty of controlling the species in Brazil. It is concluded
that the MAB platform represents a promising tool for optimizing monitoring studies
and that the effective management of Sus scrofa requires a transition to evidencebased strategies, integrating precision monitoring, predictive modeling, and planned
control.
Descrição
Citação
BASSANI, Vittoria Façanha. Plataforma de modelagem baseada em agentes (ABM) em R: simulação de abundância e revisão de métodos de controle de Sus scrofa. 2025. Trabalho de Conclusão de Curso (Graduação em Ciências Biológicas) – Universidade Federal de São Carlos, Lagoa do Sino, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/23384.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
