Superfícies de Curvatura Média Constante no Espaço Euclidiano
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
This paper deals with the surfaces of constant mean curvature in the Euclidean space.
The first part of the text is devoted to minimal surfaces. We begin our studies with the
Enneper-Weirstrass Representation Theorem and discuss some of its most important
applications such as Jorge-Xavier, Rosenberg-Toubiana, and Osserman Theorems.
Next, we present the Principle of Tangency of Fontenele-Silva and use it to
demonstrate the classical half-space Theorem. We close this part by discussing the
topological constraints imposed by the hypothesis of finite total curvature. In the
second part of the manuscript we studied the surfaces of constant mean curvature,
possibly non-zero. We start with Heinz's Theorem and its applications, we present the
classification theorem of the surfaces of rotation with constant mean curvature made
by Delaunay, and we conclude with the concept of stability where we demonstrate the
classical Sphere Stability Theorem. We close the text with a succinct presentation of
recent results on the surfaces of Weingarten in the Euclidean space.
Descrição
Palavras-chave
Superfícies mínimas, Superfícies de Curvatura Média Constante, Teorema de Representação de Enneper-Weierstrass, Teorema de Jorge-Xavier, Teorema Rosenberg-Toubiana, Teorema de Osserman, Teorema do Semi-espaço, Curvatura Total Finita, Teorema de Heinz, Teorema de Delaunay, Teorema de Estabilidade da Esfera, Superfícies de Weingarten, Minimal Surfaces, Surfaces of Constant Mean Curvature, Enneper-Weirstrass Representation Theorem, Jorge-Xavier's Theorem, Rosenberg-Toubiana Theorem, Osserman's Theorem, Semi-space Theorem, Finite Total Curvature, Heinz's Theorem, Delaunay's Theorem, Sphere Stability Theorem, Weingarten Surfaces
Citação
SANTOS, José Ramos Araujo dos. Superfícies de Curvatura Média Constante no Espaço Euclidiano. 2019. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11145.