Número de Nielsen-Borsuk-Ulam para aplicações entre toros
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The Nielsen-Borsuk-Ulam number is a lower bound for the minimal number of pair of coincidences points such that f(x) = f(\tau(x)) in a given homotopy class of maps. In this text the Nielsen-Borsuk-Ulam number, NBU(f; \tau), is calculated for any mapsf : T^n \to T^n where T^n is the torus of dimension n with n less than or equal to 3 and \tau is any free involution in Tn. Furthermore, it is concluded that the tori T^1, T^2 and T^3 are Wecken spaces in the Nielsen-Borsuk-Ulam theory and that the triple (Tn; \tau ;Tn) don't have the Borsuk-Ulam property for any free involution \tau.
Descrição
Citação
MELO, Givanildo Donizeti de. Número de Nielsen-Borsuk-Ulam para aplicações entre toros. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14270.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
