Framework para investigação de mapeamentos de aplicações em arquiteturas manycore
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
This thesis proposes an implementation of a framework for mapping graphs onto manycore architectures with multi-objective metrics optimization. The aim is to propose a new approach in relation to the works found in the related literature. To validate this proposal, the following are presented: a calibration methodology and multi-objective mapping of tasks related to pattern detection in high-resolution images (binary and grayscale), and a proposal for a new self-adaptive methodology to be used in multi-objective algorithms for mapping applications for manycore architectures. The results obtained through the pattern detection and task mapping methodology on manycore architectures demonstrate a high rate of generalization and accuracy. This brings a new contribution regarding the use of the evaluated multi-objective algorithms, with the best performance obtained by the PESAII algorithm, which was not previously reported in the literature. The methodology related to the mapping and use of the self-adaptive strategy represents a complete study with the Hypervolume and IGD performance indicators, proving the greater effectiveness of PESAII for the Hypervolume metric. This also makes a new contribution regarding the NSGAIII and SPEA2 algorithms regarding the metric IGD, demonstrating the improvement of the obtained results in the use of the proposed self-adaptive strategy.
Descrição
Citação
LIMA, Denis Pereira. Framework para investigação de mapeamentos de aplicações em arquiteturas manycore. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/17580.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
