G-variedades riemannianas como hipersuperfícies de formas espaciais

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

(See full text for download) It is proved that an isometric immersion f: Mn ! Qn+1 c of a compact Riemannian mani-fold of dimension n ¸ 3 into a space form of dimension n + 1 is equivariant with respect to a Lie group homomor¯sm ©: Iso0(Mn) ! Iso(Qn+1 c ), where Iso0(Mn) denotes the identity component of the isometry group Iso(Mn) of Mn. For the case Qn+1 c = Rn+1, it is shown that © takes every closed connected subgroup of Iso(Mn) acting locally polarly on Mn into a group that acts polarly on Rn+1. Moreover, compact Euclidean rotation hypersurfaces of dimension n ¸ 3 are characterized by their underlying warped product structure. Besides, isometric immersions f: Mn ! Qn+1 c of a complete Riemannian manifold Mn under a locally polar action of a closed connected subgroup of Iso(Mn) with umbilical principal orbits are studied.

Descrição

Citação

GONÇALVES, Ion Moutinho. G-variedades riemannianas como hipersuperfícies de formas espaciais. 2006. 76 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2006.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced