Uma abordagem híbrida baseada em Projeções sobre Conjuntos Convexos para Super-Resolução espacial e espectral
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
This work proposes both a study and a development of an algorithm for super-resolution of digital images using projections onto convex sets. The method is based on a classic algorithm for spatial super-resolution which considering the subpixel information present in a set of lower resolution images, generate an image of higher resolution and better visual quality. We propose the incorporation of a new restriction based on the Richardson-Lucy algorithm in order to restore and recover part of the spatial frequencies lost during the degradation and decimation process of the high resolution images. In this way the algorithm provides a hybrid approach based on projections onto convex sets which is capable of promoting both the spatial and spectral image super-resolution. The proposed approach was compared with the original algorithm from Sezan and Tekalp and later with a method based on a robust framework that is considered nowadays one of the most effective methods for super-resolution. The results, considering both the visual and the mean square error analysis, demonstrate that the proposed method has great potential promoting increased visual quality over the images studied.
Descrição
Citação
CUNHA, Bruno Aguilar. Uma abordagem híbrida baseada em Projeções sobre Conjuntos Convexos para Super-Resolução espacial e espectral. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, Sorocaba, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9159.