G-variedades riemannianas como hipersuperfícies de formas espaciais
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
(See full text for download)
It is proved that an isometric immersion f: Mn ! Qn+1
c of a compact Riemannian mani-fold of dimension n ¸ 3 into a space form of dimension n + 1 is equivariant with respect
to a Lie group homomor¯sm ©: Iso0(Mn) ! Iso(Qn+1
c ), where Iso0(Mn) denotes the identity component of the isometry group Iso(Mn) of Mn. For the case Qn+1
c = Rn+1, it is shown that © takes every closed connected subgroup of Iso(Mn) acting locally polarly on Mn into a group that acts polarly on Rn+1. Moreover, compact Euclidean rotation hypersurfaces of dimension n ¸ 3 are characterized by their underlying warped product structure. Besides, isometric immersions f: Mn ! Qn+1 c of a complete Riemannian manifold Mn under a locally polar action of a closed connected subgroup of Iso(Mn) with umbilical principal orbits are studied.
Descrição
Palavras-chave
Citação
GONÇALVES, Ion Moutinho. G-variedades riemannianas como hipersuperfícies de formas espaciais. 2006. 76 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2006.